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Abstract. A general formulation for capillary flow of two miscible fluids – one a dilute plug of polymer fluid
inserted into a fully developed Poiseuille flow of the other, a Newtonian stream – is examined for its long time
behavior. Phenomenologically, the system evolves from an initial state, that of a plug within the boundaries of
sharp, well defined fronts inside a Newtonian stream, to a more homogenized state in the very long time scale.
This problem was addressed by G.I. Taylor but with regard to a system of two Newtonian fluids, leading to
the well-known results commonly described as ‘Taylor axial dispersion’. In this paper, a general and systematic
perturbation analysis is presented from which Taylor’s result is recovered as a special case of a more general
solution which applies to fluids incorporating elastic properties. In particular, the influence of viscoelasticity and
(polymer) diffusivity on the observed pressure profile in the capillary conduit is examined. This effect is clearly
separated out for small Peclet number flows using asymptotic and numerical analysis. The results identify the
influence of fluid viscosity, elasticity, and diffusivity on the observed pressure profile and form the basis for the
improved characterization of polymeric elasticity using capillaries – a finding that is of significant scientific and
commercial interest. These results were obtained by the authors as a class of observations resulting from the
perturbation analysis of forced-flow capillary devices in viscoelastic fluid property investigation.

Key words: capillary viscometers, differential capillary viscometer, forced flow viscometer, perturbation methods,
Taylor dispersion.

1. Introduction

Taylor [1, 2] examined the behavior of two miscible (Newtonian) fluids of similar properties
in a capillary flow. One liquid was inserted as a plug into the steady Poiseuille flow of the
second liquid and the resulting concentration profiles were tracked over time. In particular, the
balance of the competing effects of diffusion (especially radial diffusion) and of convection
were examined. Taylor showed, through ad hoc analysis, and confirmed through experiment,
that the radial diffusion works to offset axial convective transport so that the plug ‘sticks
together’ longer/farther downstream. In fact, he found, that after enough time, an initial source
could be found uniformly distributed (Gaussian distributed) about a point traveling at the mean
velocity of the original Poiseuille flow, and of orders of magnitude larger amplitude than it
would have been in purely convective flow. Taylor found that, even when axial diffusion is
small, the combined effects of axial convection and radial diffusion work to give an axial
diffusion equation governing the cross-section averaged concentration. Taylor’s results were
later verified and extended by Aris [3] and Barton [4] using the method of moments, and by
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Figure 1. Plateau and transition fronts in the pressure profile.

Brenner [5, Chapter 3]. Using a centre-manifold approach, Mercer and Roberts [6] obtained
higher-order approximations, including the case of channels of varying cross section, and
Balakotaiah and Chang [7] included adsorption/desorption at walls, as well as bulk and surface
reactions. Taylor’s results were also systematized using similarity variables by Chatwin [8].

In recent work on polymer characterization [9] similar flow was examined, but with the
additional complication that one fluid was a polymer mixture with behavior governed by
the Upper Convected Maxwell Model (UCMM). The purpose of that work was to provide a
framework for unambiguous polymer characterization using capillary viscometry. In that case,
however, due to the non-Newtonian nature of the plug fluid (elasticity, higher viscosity and
density), the system response and the governing equations are more complicated than those
studied by Taylor. Thus, a clear formal perturbation process was needed in order to analyze
the system of governing equations. In addition, the ensuing analysis provides the benefit of
systematizing Taylor’s procedure.

2. Background

In previous work [9, 10] two-component capillary flow was studied experimentally and ana-
lytically as a means for rapid characterization of polymers in industrial applications. In that
work a dilute polymer plug (fluid b) was introduced into a constant volumetric flow-rate driven
Poiseuille capillary flow of a Newtonian solvent (fluid a). The evolution of the polymer plug
was tracked by observation of changes in the pressure drop at a point downstream of the
injection port. While previous work had identified the pressure plateau (see Figure 1) with
the intrinsic viscosity of the polymer, the goal of [9] was to relate the leading (trailing) edge
behavior of the plug pressure profile to the polymer elasticity and diffusivity, thus giving
additional information, namely on the molecular weight distribution.

This analysis is specifically for dilute polymer solutions, the goal being to minimize chain-
chain interactions, thus simplifying the model needed and leaving molecular weight of the
polymer, directly related to polymer chain length, as the primary material property, while
simplifying the relationship between the molecular weight related parameters – intrinsic vis-
cosity, elasticity and diffusion differential – and the experimentally measured quantity – the
pressure drop. The goal of this analysis is to quantify the use of the flow referenced differential
capillary rheometer to obtain real-time, at-line measurements of the polymer molecular weight
in industrial processing conditions.
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2.1. GOVERNING BOUNDARY-VALUE PROBLEM

The flow under consideration is assumed axisymmetric and the governing equations are nondi-
mensionalized by the observation time and length scales as follows [9]:

Axial coordinate: z = z′/L , where L is an observation length (≈ 1 meter);
Radial coordinate: r = r ′/R , where R is the capillary radius (≈ 10−4 meters);
Axial velocity: v = v′

z/V , where V = 2Q/(πR2), and Q is the fixed volumetric flow
rate;
Radial velocity: w = (L v′

r )/(R V );
Stress: [ τrr , τθθ , τzz , p ] = 4/(GL) [ τ ′

rr , τ
′
θθ , τ

′
zz , p

′ ] , where G = 4 ηa V/R2 =
8 ηa Q/(πR4) , and τrz = 4/(GR) τ ′

rz ;
Time: t = (V /L) t ′ .

The resulting equations involve the dimensionless parameters:
R/L , the ratio of the capillary radius to the observation length;
Re = ρa V R

2/(ηa L), the Reynolds number;
Scr = (

ρa D
r
ab/ηa

)−1
, the Schmidt number in the radial direction, where Drab is the

radial diffusion coefficient;
De = λV/L , the Deborah number, where λ is the relaxation time of the plug;
� = ρb/(ρa−ρb), a measure of the density difference between the polymer solution and
the solvent.

Finally, φa , φb are the volume fractions of species a and b , respectively, ηa is the solvent
viscosity and ρa is the solvent density.

The flow is axisymmetric, and terms O((R/L)2) = O(10−8) or O(Re) = O(10−6) to
O(10−3) (depending on how slow the flow is) are neglected. So, in cylindrical coordinates,
using the UCMM, τrθ = τθz = 0 , and due to neglect of terms O((R/L)2) , τrr = τθθ = 0 .
Thus the governing equations valid for these scalings are [9]

1

r
∂r(r w)+ ∂zv = −{∂t log |φa +�| + w ∂r log |φa +�| + v ∂z log |φa +�|} , (1)

∂rp = 0, ∂zp = 1

r
∂r(r τrz)+ ∂zτzz, (2, 3)

Re

{
∂tφa + 1

r
∂r(r φa w)+ ∂z(φa v)

}
= �

r
∂r

( r
Scr

∂r log |φa +�|
)
, (4)

with the constitutive relations

λDe

λ
{∂tτrz + w ∂rτrz + v ∂zτrz − τrz ∂rw − τzz ∂zw − τrz ∂zv} + τrz = η

ηa
∂rv, (5)

λDe

λ
{∂tτzz + w ∂rτzz + v ∂zτzz − 2 τrz ∂rv − 2 τzz ∂zv} + τzz = 0 . (6)

Note that O(Re) terms are kept in (4) since they are comparable to those O (1/Scr ), namely
Re Scr = Pe = (V R2)/(LDrab) = O(1) or O(10−1) [9]. The boundary conditions are those
of no slip: v(1, z, t) = w(1, z, t) = 0 ; symmetry about r = 0 : vr(0, z, t) = w(0, z, t) = 0 ;
and fixed volumetric flow rate:

∫ 1
0 rv̂ dr = 1 , where v̂ is the volume averaged velocity related

to v, the mass averaged velocity, by v̂ = v+(1/�)(v−va) φa ; as well as boundary conditions
on the concentrations, namely:
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φa |z=0 = 1 , lim
z→∞φa = 1 , (7)

∂rφa |r=0 = 0 , ∂rφa |r=1 = 0 . (8)

2.2. EXPANSION IN TERMS OF THE DILUTION PARAMETER ε

The injected plug is dilute, where dilution is measured through the parameter ε :

ε = (moles of polymer in plug)/(moles of solvent in the plug).

In practice, for these problems, ε = O(10−2, 10−1). The parameters of interest have the
following expansions:

η = ηa(1 + ε α [η]φb + ε2KH α
2 [η]2 φ2

b + · · · ) ,
(Scr )−1 = D0 (1 + ε KrD α [η]φb,0 + · · · )

and

� = �0

ε
+ · · · , λDe

λ
= ε λ0 φb + · · · .

Here [η] is known as the intrinsic viscosity, KH the Huggins constant, and KrD is the diffusion
differential. Thus, when all the dependent variables above are expanded in terms of ε , ( ) =
( )0 + ε( )1 + · · · , the governing equations show [9] to zeroth order in ε (O(ε0))

v0 = (1 − r2) , (9)

δ (∂tφa,0 + v0 ∂zφa,0) = 1

r
∂r(r ∂rφa,0) , (10)

τ (0)zz = 0, τ (0)rz = ∂rv0 , (11)

where δ = Re/D0 is the Peclet number, and to first order in ε (O(ε1)),

1

r
∂r(r w1)+ ∂zv1 = −1

δ

1

�0

1

r
∂r(r ∂rφa,0) , ∂rp1 = 0 , (12, 13)

∂zp1 = 1

r
∂r(r ∂rv1 − 2α [η] r2 φb,0)+ 8λ0 r

2 ∂zφb,0 , (14)

δ
{
∂tφa,1 + v0 ∂zφa,1 +∂z(v1 φa,0)+ 1

r
∂r(r w1 φa,0)

}
= 1

r
∂r(r ∂rφa,1)

+KrD α [η] 1

r
∂r(r φb,0 ∂rφa,0)− 1

�0

1

r
∂r(r φa,0 ∂rφa,0) .

(15)

We can rewrite Equation (15), using (12), as follows

δ (∂t + v0 ∂z) φa,1 − 1

r
∂r(r ∂rφa,1) = −δ {v1 ∂zφa,0 + w1 ∂rφa,0

}
+α [η]KrD

1

r
∂r(r φb,0 ∂rφa,0)− 1

�0
(∂rφa,0)

2 .

(16)
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Following the mean flow, we introduce ξ = z − t/2 and change variables (r, z, t) →
(r, ξ, t) . Careful manipulation of (12)–(14) gives, with cross-sectional average represented
as f̄ (ξ, t) = 2

∫ 1
0 rf (r, ξ, t) dr ,

v1 = 2α [η]
{∫ r

0
s φb,0(s, ξ, t) ds − r2 r2 φb,0 − (1

2
− r2)φb,0

}

− 4λ0

{
2
∫ r

0
s3 log(r/s) ∂ξφb,0 ds + (1 − r2) r2(1 − r2)∂ξφb,0 + r2 log r ∂ξφb,0

}
,

(17)

w1 = −α [η]
{

1

r

∫ r

0
s(r2 − s2)∂ξφb,0 ds − r3

2
r2 ∂ξφb,0 − r (1

2
− r2)∂ξφb,0

}

+λ0

{
4 r

∫ r

0
s3

(
log
r

s
− 1

2

)
∂2
ξ φb,0 ds + 2

r

∫ r

0
s5 ∂2

ξ φb,0 ds

+r (2 − r2) r2(1 − r2)∂2
ξ φb,0 + 2 r r2 log r ∂2

ξ φb,0

}
− 1

δ �0
∂rφa,0 .

(18)

Note that v is the mass-average velocity related to the volume-average velocity v̂ by v̂ =
v + (1/�)(v − va)φa , where va is the phase a velocity. The average of v̂1 over a cross-section
is zero, as this is a (constant) volumetric-flux-driven flow. Because this is a two-fluid mixture,
and v is the mass averaged velocity, the velocity is not, as might have been expected, uni-
directional. To lowest order it is Poiseuille flow, but to O(ε) there is an axial perturbation to
the Poiseuille profile as well as a radial velocity.

Boundary conditions for the expansion concentrations are [9]

φa,i |z=0 = lim
z→∞φa,i =

{ 1 for i = 0

0 for i = 1, 2, 3, . . .
, ∂rφa,i |r=0 = ∂rφa,i |r=1 = 0 .

Initial conditions are

φa,0(r, z, 0) = 1 − H(z+ &)+ H(z− &) ,
φa,i(r, z, 0) = 0 for i = 1, 2, . . . ,

(19)

where H(z) is the Heaviside function.
The specific interest in this application is in the influence of the intrinsic viscosity, elasticity

and the diffusion differential KrD on the flow or, conversely, on how variations in the flow
profile can be used to determine those parameters, which in turn are linked to the molecular
weight of the polymer [11, Chapter 9]. Note that the effects of elasticity (as measured by λ0),
polymer viscosity, differing densities of solutions, and diffusion differentials, do not appear
until O(ε) as expected, because the solution is dilute. Thus, the O(ε0) problem is identical
with that investigated by Taylor (and others). The O(ε1) problem introduces new effects.

The experimentally measured quantity is the pressure cross-sectional average, and careful
manipulation of the above equations shows [9]
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∂zp = −4

{
1 + 2 ε

[
α [η] r2 φb,0 − 2λ0 r2(1 − r2)∂ξφb,0

]
− ε2

[
α [η]

(
r φb,0 ∂rv1

−2 r2 (KH α [η]φ2
b,0 + φb,1)

)
− λ0

(
r φb,0 ∂C∂rv1 − 2α [η] r2 φb,0∂Cφb,0

+2 r2 φb,0 ∂ξv1 − 2 r φb,0w1 + 6 r2 φb,0 ∂rw1

−2 r(1 − r2)∂ξA− 4 r2(1 − r2) ∂ξφb,1

)]
+ · · ·

}
,

(20)

where

∂C = ∂t +
(

1

2
− r2

)
∂ξ , A = 2 (α [η] r φb,0 − ∂rv1 − λ0 r ∂Cφb,0) .

The case of ‘infinite dilution’ (ε → 0 , a single species: Newtonian flow as used in Taylor’s
analysis) is

∂zp = −4 (Hagen-Poiseuille law).

If the solute in the plug has no elasticity (λ0 = 0), or if ∂ξφb = 0 (a plateau region – see
Figure 1), then

∂zp = −4
{

1 + 2 ε α [η] r2 φb,0 + · · ·
}
.

The O(ε0) pressure is the standard Hagen-Poiseuille (Newtonian) result. The O(ε1)

pressure-drop term with α [η] is due to the polymer viscosity (related to the molecular weight
of the polymer) and depends on φb,0 , whereas the elasticity terms (λ0) are zero in a plateau
region where ∂ξφb = 0 . The elasticity terms become important when φb changes with ξ ,
namely at fronts, whileKrD , the diffusion differential, does not appear explicitly in the average
pressure drop to this order, but rather appears there at O(ε2) through φb,1 (see (16)).

3. Perturbation expansion for small Peclet numbers δ

In order to gain more insight into the problem, the goal is to examine each of the O(ε0)

problem and the O(ε1) problem for its solution for small Peclet number δ. This will clarify
bounds for validity of the two-parameter expansion (ε, δ) as well as clarify the role of the
parameters involved. In addition, analysis of these limits guided the numerics in [9]. To order
ε0 the governing equation is

ε0 : δ

(
∂t + (12 − r2) ∂ξ

)
φa,0 − 1

r
∂r(r ∂rφa,0) = 0 .

A straightforward perturbation expansion (regular or outer expansion)

φa,0 = φ̃
(0)
a,0 + δ φ̃(1)a,0 + · · ·

gives

1

r
∂r

(
r ∂rφ̃

(0)
a,0

)
= 0 , (21)



Taylor Dispersion Revisited 275

1

r
∂r

(
r ∂rφ̃

(1)
a,0

)
=
(
∂t +

(
1

2
− r2

)
∂ξ

)
φ̃
(0)
a,0 , (22)

etc. From (21) clearly φ̃(0)a,0 is independent of r. Substitution in (22), followed by averaging
over a cross section, gives

φ̃
(0)
a,0 = φ̃

(0)
a,0(ξ) .

Thus the partial differential equation is reduced to a hyperbolic (ordinary differential) equa-
tion. The solution to this order is the initial condition – there is no evolution. Continuing in
this vein we’d find

φ̃
(1)
a,0(r, ξ, t) = t

192
∂2
ξ φ̃

(0)
a,0 + 1

16

(
r2(2 − r2)− 2

3

)
∂ξ φ̃

(0)
a,0 + d̃(1)0 (ξ) .

Thus, the solution has a tendency to evolve in time, but the result of this outer expansion is
that convective terms are not appropriately balanced. In particular, when δ ∂2

ξ φ
(0)
a,0 = O(1), the

expansion is nonuniform. Later matching with the boundary-layer expansion for a front shows
that φ̃(0)a,0 = H(ξ) and φ̃(1)a,0 = 0, hence the outer expansion for a step is trivial. For a plug, the
outer expansion describes the plateau region. Motivated by this, we look more carefully at a
boundary layer in ξ . The equation

δ {∂tφa,0 + (1
2

− r2) ∂ξφa,0} = 1

r
∂r(r ∂rφa,0) (23)

clearly indicates that

φa,0(r, ξ, t) = φ
(0)
a,0(ξ, t)+O(δ) ,

that is, any r dependence comes to higher order. From the above analysis clearly we must look
at regions of rapid change in ξ (the fronts). So with

ζ = ξ − ξ ∗

µ(δ)
, φ(r, ζ, t) = φ0(ζ, t)+ ν1(δ) φ1 + · · · ,

where ξ ∗ indicates the location of the boundary layer, we obtain

δ {∂tφ0 + · · · } +
(

1

2
− r2

)
δ

µ
∂ζφ0 +

(
1

2
− r2

)
δ

µ
ν1 ∂ζφ1 + · · ·

= ν1
1
r
∂r
(
r ∂rφa,1

)+ ν2
1
r
∂r
(
r ∂rφa,2

)+ · · · .
The distinguished limit is

δ

µ
= ν1

to balance the leading-order terms, and

δ = δ

µ
ν1 = ν2

to balance the next order terms, hence

µ = ν1 = √
δ and ν2 = δ .
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This is the same stretching indicated by the non-uniformity in the outer expansion. With

ζ = ξ − ξ0√
δ

where ξ0 = −& or, respectively, & for the initial condition (19), and the commensurate expan-
sion

φa,0(r, ξ, t) = φ
(0)
a,0(r, ζ, t)+

√
δ φ

(1)
a,0(r, ζ, t) + · · · ,

we get, on substituting in (23) and equating corresponding powers of δ ,

1

r
∂r

(
r ∂rφ

(0)
a,0

)
= 0 , (24)

1

r
∂r

(
r ∂rφ

(1)
a,0

)
=
(

1

2
− r2

)
∂ζφ

(0)
a,0 , (25)

1

r
∂r

(
r ∂rφ

(2)
a,0

)
=
(

1

2
− r2

)
∂ζφ

(1)
a,0 + ∂tφ(0)a,0 , (26)

1

r
∂r

(
r∂rφ

(3)
a,0

)
=
(

1

2
− r2

)
∂ζφ

(2)
a,0 + ∂tφ(1)a,0 . (27)

Note that, as in the outer expansion, and as assumed in the scaling, φ(0)a,0 is independent of r,
but the difference is that now it is no longer independent of t . The averaging of Equation (24)
over a cross-section now just gives 0 = 0. Integrating (25), we have

φ
(1)
a,0 = r2

16
(2 − r2) ∂ζ φ

(0)
a,0 + c(1)0 (ζ, t)

and integrating (26), using the equation above, we have

φ
(2)
a,0 = r4

128

(
1

2
− 5

9
r2 + r4

8

)
∂2
ζ φ

(0)
a,0 + r2

16
(2 − r2) ∂ζ c

(1)
0 (ζ, t)+

r2

4
∂tφ

(0)
a,0 + c(2)0 (ζ, t) .

Averaging the O(δ) Equation (26) over a cross-section now gives

∂tφ
(0)
a,0 = 1

192
∂2
ζ φ

(0)
a,0 . (28)

Since we are particularly interested in the behavior at the front, we solve the problem with a
step initial concentration. The superposition of the two front solutions, a step up at ξ = −& ,
down at ξ = & , gives the plug solution (see below). Thus, this diffusion Equation (28) for
ϕ
(0)
a,0 (the solution corresponding to a front) should be solved, for ξ0 = &, with

ϕ
(0)
a,0(ζ, 0) = H(ζ )

and

ϕ
(0)
a,0(ζ, t)→

{ 0 , as ζ → −∞
1 , as ζ → ∞ .

This is precisely Taylor dispersion [12, pp. 82–96], namely
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∂tφa,0 = 1

192
∂2
ζ φa,0 +O(√δ)

or, in dimensional terms,

∂t ′φa,0 = Deff ∂
2
ξ ′φa,0 + · · · ,

where

Deff = 1

192

V 2R2

D0
.

The solution for the step initial concentration (front) is

ϕ
(0)
a,0 = 1

2

{
1 + erf

(
4
√

3 ζ√
t

)}
. (29)

By averaging the O(δ3/2) Equation (27) one finds that c(1)0 satisfies the nonhomogeneous
diffusion equation

∂tc
(1)
0 − 1

192
∂2
ζ c
(1)
0 = − 1

120
∂t∂ζφ

(0)
a,0

so that

c
(1)
0 = 4

√
3√
πt

∞∫
−∞
c
(1)
0 (y, 0)e

−48(ζ−y)2/t dy −
√

3

30
√
π

t∫
0

dτ√
t − τ

∞∫
−∞

e−48(ζ−y)2/(t−τ ) ∂τ ∂ζφ(0)a,0(y, τ) dy .

Since φ(1)a,0(r, ζ, 0) = 0 , and φ(1)a,0(r, ζ, t) = r2

16(2 − r2) ∂ζφ
(0)
a,0 + c(1)0 (ζ, t) , one finds for the

front,

c
(1)
0 = −

√
3

20 t
√
πt
(3t + 32ζ 2) e−48ζ 2/t , (30)

ϕ
(1)
a,0(r, ζ, t) = r2

16
(2 − r2) ∂ζϕ

(0)
a,0 −

√
3

20 t
√
πt
(3t + 32ζ 2) e−48ζ 2/t . (31)

Note that the second term is a particular solution of the equation for c(1)0 . The first term is a
solution of the corresponding homogeneous equation. The reason for this particular value of
the multiplicative constant will be described below.

At this point it is useful to rewrite φ(2)a,0 substituting for ∂tφ
(0)
a,0 from (28) to obtain

φ
(2)
a,0 = r2

768

{
3

4
r6 − 10

3
r4 + 3r2 + 1

}
∂2
ζ φ

(0)
a,0 + r2

16
(2 − r2) ∂ζ c

(1)
0 + c(2)0 (ζ, t) .

Returning to the solution for a plug initially uniformly distributed across the capillary
(φb(r, ξ, 0) = H(ξ + &) − H(ξ − &)), note that we can add the boundary-layer solutions at
ξ = & and ξ = −&, subtracting the common part. Thus

φb,0(r, ξ, t) = ϕ
(0)
b,0

(
ξ + &√
δ
, t

)
+ √

δ ϕ
(1)
b,0

(
ξ + &√
δ
, r, t

)
+ · · ·

−ϕ(0)b,0
(
ξ − &√
δ
, t

)
− √

δ ϕ
(1)
b,0

(
ξ − &√
δ
, r, t

)
+ · · ·
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Mass must be conserved, thus

2 & =
∫ ∞

−∞
φb,0(r, ξ, t) dξ =

∫ ∞

−∞

[
ϕ
(0)
b,0

(
ξ + &√
δ
, t

)
− ϕ(0)b,0

(
ξ − &√
δ
, t

)]
dξ

+√
δ

∫ ∞

−∞

[
ϕ
(1)
b,0

(
ξ + &√
δ
, t

)
− ϕ(1)b,0

(
ξ − &√
δ
, t

)]
dξ + · · · ,

so ∫ ∞

−∞

[
ϕ
(0)
b,0

(
ξ + &√
δ
, t

)
− ϕ(0)b,0

(
ξ − &√
δ
, t

)]
dξ = 2 &

∫ ∞

−∞

[
ϕ
(1)
b,0

(
ξ + &√
δ
, t

)
− ϕ(1)b,0

(
ξ − &√
δ
, t

)]
dξ = 0 ,

etc. Also, calculation shows that
∫∞
−∞ ξ φb,0(ξ, t) dξ = 0 to this order, with the given choices

of solutions of the homogeneous equations, e.g. in φ(1)a,0. Without this choice the center of mass
of the solute would be shifted.

Chatwin [8] found the analogous result for a source initial condition. Should his work be
extended to the plug initial condition, he would find, in his notation, that his expansion would
start with a T 0 instead of a T −1 term. In fact, he would get

C = C(0)(X,R)+ C(1)(X,R)

T
+ · · ·

where his variables X and T in terms of our ζ and t variables, thus at the step, are

X = ζ
√

96√
t
, T = 1

4

√
t

6δ

with

C(0) = f0(X) = 1

2

(
1 + erf

X√
2

)
,

C(1) =
√

2

π

{
1

16

(
R2 − R4

2
− 1

3

)
− X2

480
+ 1

480

}
e−X2/2 .

Changing variables to (ζ, t), this agrees precisely with (29), (31). Taylor’s correction to C(0)

agreed with the first term in C(1) but, due to his solution form hypothesis, did not include the
last two terms.

Now consider the O(ε1) equation, with the boundary-layer expansion

φa,1(r, ξ, t) = φ
(0)
a,1(r, ζ, t)+

√
δ φ

(1)
a,1(r, ζ, t) + · · · .

The expansions for w1 and v1 , from (17), (18) are

v1 = 1√
δ
v
(−1)
1 + v(0)1 + √

δ v
(1)
1 + · · · , w1 = 1

δ
w
(−2)
1 + 1√

δ
w
(−1)
1 + w(0)1 + · · ·

where, expanding the explicit representations for v1 and w1 (17),(18), and using our knowl-
edge of the O(ε0) terms, we obtain
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v1 = − 1√
δ

λ0

6
∂ζφ

(0)
b,0 (r

2 − 1)(3r2 − 1)+ λ0

16
(r2 − 1)

{
r6

8
− 23

72
r4 − 23

72
r2 + 53

360

}
∂2
ζ φ

(0)
b,0

+λ0

6
(r2 − 1)(3r2 − 1) ∂ζ c

1
0 +O(√δ) , (32)

w1 = 1

δ

λ0

12
r (r2 − 1)2 ∂2

ζ φ
(0)
b,0 − 1√

δ

{
λ0

11520
∂3
ζ φ

(0)
b,0 r (r

2 − 1)2(9r4 − 22r2 − 53)

+ 1

�0
∂ζφ

(0)
a,0

r

4
(1 − r2)+ λ0 ∂

2
ζ c
(1)
0

r

12
(r2 − 1)2

}
+O(1) .

(33)

Thus, from (16) in terms of δ

δ ∂tφa,1 + √
δ

(
1

2
− r2

)
∂ζφa,1 − 1

r
∂r(r ∂rφa,1) = −√

δ v1 ∂ζφa,0

−δ w1 ∂rφa,0 + α[η]KrD
1

r
∂r(r φb,0 ∂rφa,0)− 1

�0
(∂rφa,0)

2 ,

and since ∂rφ
(0)
a,0 = 0 , one finds

1

r
∂r

(
r ∂rφ

(0)
a,1

)
= v

(−1)
1 ∂ζφ

(0)
a,0 ,

1

r
∂r(r ∂rφ

(1)
a,1) =

(
1

2
− r2

)
∂ζφ

(0)
a,1 + v(0)1 ∂ζφ

(0)
a,0 + v(−1)

1 ∂ζφ
(1)
a,0

+w(−2)
1 ∂rφ

(1)
a,0 − α[η]KrD 1

r
∂r (r φ

(0)
b,0 ∂rφ

(1)
a,0) ,

and

1

r
∂r

(
r ∂rφ

(2)
a,1

)
= ∂tφ

(0)
a,1 +

(
1

2
− r2

)
∂ζφ

(1)
a,1 + v(1)1 ∂ζφ

(0)
a,0 + v(0)1 ∂ζφ

(1)
a,0 + v(−1)

1 ∂ζφ
(2)
a,0

+w(−1)
1 ∂rφ

(1)
a,0 + w(−2)

1 ∂rφ
(2)
a,0 − α[η]KrD

1

r
∂r

(
r [φ(0)b,0 ∂rφ(2)a,0 + φ(1)b,0 ∂rφ(1)a,0]

)

+ 1

�0

(
∂rφ

(1)
a,0

)2
.

(34)

Solving gives

φ
(0)
a,1 = λ0

72

(
∂ζ (φ

(0)
a,0)

)2
r2(r4 − 3r2 + 3)+ c(0)1 (ζ, t) (35)

and

φ
(1)
a,1 = − λ0

230400
r2{53r8 − 300r6 + 500r4 − 90r2 − 265} ∂ζ (∂ζφ(0)a,0)2

+λ0

36
r2(r4 − 3r2 + 3) ∂ζ φ

(0)
a,0 ∂ζ c

(1)
0 + r2

16
(2 − r2) ∂ζ c

(0)
1

+ r
2

16
(2 − r2)α[η]KrD ∂ζφ(0)a,0 (1 − φ(0)a,0)+ α[η]KrD (1 − φ(0)a,0) c(1)0 + c(1)1 .
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Averaging (34) gives the forced diffusion equation which then determines φ(0)a,1 (via (35) and
the solution to the following forced diffusion equation)

∂tc
(0)
1 − 1

192
∂2
ζ c
(0)
1 = λ0

192

{
4

5
∂ζ

(
∂ζφ

(0)
a,0 ∂ζ c

(1)
0

)
+ 67

2016

(
∂2
ζ φ

(0)
a,0

)2

+ 25

2016
∂ζφ

(0)
a,0 ∂

3
ζ φ

(0)
a,0

}
− 1

192
α[η]KrD ∂ζ (φ(0)b,0 ∂ζφ(0)a,0) .

(36)

For the step initial condition, (35) and (36) give

ϕ
(0)
b,1 = λ0

{
2

3π t (r
6 − 3r4 + 3r2) e−96ζ 2/t + 1

2100 t

[
− 3548 ζ√

π t
e−48ζ 2/terf(4

√
3 ζ/

√
t)

−331 e−96ζ 2/t + 32256 ζ 2

t
e−96ζ 2/t

]}
+ α[η]KrD

8

{
erf2(4

√
3 ζ/

√
t)− 1

+ 2√
π

e−48 ζ 2/t
[

1√
π

e−48 ζ 2/t − 4
√

3 ζ√
t

(
1 − erf(4

√
3 ζ/

√
t)
)] }

,

(37)

which is needed to determine the diffusion differential contribution to the pressure. Note the
nonlinear interaction terms. For λ0 �= 0 the elasticity correction to the concentration is O(ε),
as is the diffusion differential correction.

For the plug initial conditions,

φ = ϕ
(0)
b,1

(
ξ + &√
δ
, t

)
− ϕ(0)b,1

(
ξ − &√
δ
, t

)
.

This choice of solution assumes zero mass contribution to this order (
∫∞
−∞ φ

(0)
b,1 dξ = 0) and

the center of mass remains fixed (
∫∞
−∞ ξ φ

(0)
b,1 dξ = 0).

4. Results

The goal of this work has been to clarify intrinsic viscosity, elasticity and diffusion differen-
tial effects on the capillary pressure profile in a capillary rheometer, thus allowing improved
polymer characterization. The work deals with small Peclet number corrections to the original
expansion in terms of the dilution parameter. The goal has been to clearly delineate each of
these effects and, originally, to help guide the numerics for other Peclet-number domains.
While the effects of intrinsic viscosity, elasticity and diffusion are clearly shown in the expan-
sions (20), together with (32), (33) and (37), as well as the related nonlinear interactions, it is
useful to have some pictures elucidating these effects.

In the figures which follow, results are graphed, for an initial concentration step. Unless
otherwise noted, t = α[η] = 1 , ξ0 = 0·5 , ε = 0·1 and δ = 0·5 .

In Figure 2, φ(0)a,0 is graphed for t = 1, 2, 3. This is the equivalent, for a step function initial
condition, of Taylor’s result which was instead for a delta function initial condition. This is
the Newtonian Taylor dispersion.

In Figure 3, the numerical solution p1 = (p − p0)/ε is graphed for λ0 = 1 and KrD = 1 ,
as is the perturbation solution p(0)1 , to order one in δ , in the boundary layer. Note that to this
order the solutions agree well.
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Figure 2. Volume fraction of species a : φ(0)
a,0 . Figure 3. Cross-section-averaged pressure: p1 vs.

p
(0)
1 , λ0 = Kr

D
= 1 .

Figure 4. Effect of elasticity on cross-section-

averaged pressure: p(0)1 .

Figure 5. Effect of differential diffusion on cross-
section-averaged pressure: p∗ ; λ0 = 0.

Figure 6. Effect of differential diffusion on cross-
section-averaged pressure: p∗ ; λ0 = 1.

Figure 7. Effect of differential diffusion on cross-
section-averaged pressure: p∗ ; λ0 = 2.
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In Figure 4, the analytic pressure perturbation p(0)1 is graphed as a function of ξ for
λ0 = 0·5, 1, 2, 3 . Clearly, this shows the influence of elasticity. As the elasticity increases,
the pressure drop increases as expected.

In Figures 5, 6 and 7 the analytic pressure perturbation due to the differential diffusivity
is graphed for differential diffusivities KD = KrD = 0, 1, 5 and for values of the elasticity
parameter λ0 = 0, 1, 2 . There, p∗ is the expansion of P to first order in δ, where

P = p − p0 − ε p1 − ε2 p̃2

4 ε2 α2[η]2
,

and p̃2 is the value of p2 for KrD = 0 . These figures summarize our goal, namely to isolate
the effects of diffusivity differential and of elasticity on the pressure drop.

5. Conclusion

In this paper, the behavior of the solution to the equations governing the motion of a plug
of dilute mixture of polymer fluid in a solvent, in a capillary tube, under constant volumetric
flow conditions was examined for the dependence on the Peclet number δ . This clarified the
mechanisms, at each order in the dilution parameter ε, for mixing and in particular isolated
the effects of viscosity differential, diffusivity differential, density differential and elasticity
on the plug profile. This information will, in turn, be used to characterize the polymer.

The asymptotic results, in δ, are more than just a guide for and check on the numerics [9],
they isolate the effect of specific parameters, thus allowing one to identify [η], λ0 and KrD for
particular processing events and hence identify the molecular properties of the batch.

In conclusion, this perturbation study has not only guided the numerics, but has also en-
abled isolating the role various parameters play. In particular, the density differential �0 did
not enter the asymptotics to the order carried out. On the other hand, despite the weak elastic-
ity in the problem, this dominated diffusion differential effects. Elasticity first entered in the
boundary layer at O(ε) as did the intrinsic viscosity, the diffusion differential at O(ε2/

√
δ).
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